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Abstract

This article analyzes the trade-off between “ caution” and “ intensity” in the use of
the control variable in a one-state one-control dynamic stochastic quadratic linear
optimization problem with discount factor. It studies the effects that changesin
uncertainty of the control parameter have on the optimal first-period response of the
control variable, showing that the trade-off between “ caution” and “ intensity” depends
on the timing of the uncertainty.

Given an increase in current uncertainty and an equal increase in future
uncertainty, caution will always prevail over intensity. Moreover, the prevalence of
caution will be enlarged as the increase in future uncertainty moves farther away into the
future, while this prevalence will be reduced as the increase in future uncertainty expands
into the future.
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1. Introduction

The effects of parameter uncertainty on optima policy have received increasing attention
over the last few years, particularly in the fidld of macroeconomic policy analysis. *Specid
attention has been paid to the fact that centra banks tend to use their policy tools in a cautious
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way.

Important theoreticd results were developed in an earlier group of studies, building on
the semina Brainard (1967) paper which showed, for astatic modd, that an increasein
uncertainty would result in amore cautious use of the policy variable. Brainard' s results were
extended to dynamic models by Chow (1973), Turnovsky (1975) and Shupp (1976) for the
case of current uncertainty. Craine (1979) pointed out the relevance of the effect of future
uncertainty, snce thiswould induce a more aggressive -instead of a more cautious- use of the
policy variable, aless familiar effect than the caution effect.® These studies dedlt mostly with
one-state one-control models.

Since current uncertainty induces “caution” while future uncertainty induces “intengity”,
it is natural to ask what happens when both types of uncertainty are present. This article
andyzes the trade-off between caution and intensity in the first-period response of the control
variable when there is a change in both current and future uncertainty.* It focuses on a one-state
one-control dynamic stochastic quadratic linear optimization problem, and it uses the Riccati
equations to study the dynamic link between future uncertainty and first- period policy response.
Thefindings are that given an increase in current uncertainty and an equa increase in future
uncertainty of the control parameter, caution will dways prevail over intengty. The prevaence
of caution will be enlarged as the increase in future uncertainty moves farther away into the

! See for example Widland (1998), Amman and Kendrick (1999), Mercado and Kendrick (1999 and 2000) and
Sack (2000). The analysis of optimal policy under uncertainty can be approached in different ways besides
the one used here, focused on optimal control under parameter uncertainty. For aroad map of approaches,
see Christodoulakis et. al (1993).

2 For arecent survey on thisissue see Claridaet. al (1999).

¥ Mercado and K endrick (2000) extend this result to a one-state two-control model, showing that given an
increase in future uncertainty there will be an increase use of both, of at least one, of the first-period
controls, depending on the relative magnitude of their first-period weighted variances.

*1tisusual to focus on the first-period behavior of the policy variable, since its qualitative behavior may
well change beyond the first period. Thisis becauseits optimal values after the first period will be



future (from a given future period to amore distant one), while it will be reduced as the increase

in future uncertainty expands into the future, thet is, to severa future periods.

2. The Optimization Problem
Congder aone-gtate one-control Dynamic Stochastic Quadratic Linear Discounted

Problem, where the control parameter is uncertain. Formaly, the problem is expressed as one

of finding the contrls (u, ),_, to minimize aquadratic criterion function J of the form:

3=l + 15 e +1 uk)g 2.1)
12 2 k=0
subject to:
X, =ax +bu, +e (2.2
where:

E = expectation operator

b = discount factor (0<b £1)

X = date variable

u = control varigble

w = podgitive weight on the Sate variable

| = postive weight on the control varigble
a= date parameter

b = control parameter

S . = parameter b variance

e = random disturbance

Desired paths for the state and the controls are zero.” Parameter means a and b and
vaiances ? are assumed to be known, ands  may vary over time. Findly, the absolute value
of the Sate parameter a is assumed to be smaler or equa to one (the Sate equation is not
ungtable). The solution to the problem is the feedback rule (see Kendrick (1981), Ch. 6 and
Amman &t. a (1995), Appendix A):

computed recursively, using the model equation to determine the value of the state variable for period
“k+1” (see Kendrick 1981, Chapter 6).



u, =G, X, (2.3)
where the feedback gain coefficient is.
G, =-(E{l +bk,b?}) E{bk,,ab} (2.4)

and where k is the Riccati matrix (in this case, ascalar). Since E{b?}=b? +s 2, whiles? is
dlowed to vary with time, we can write:
bk, ,.ab

G, =- . (2.5)
1 +bk, PP +s?,)

Theevolution of k isgiven by the Riccati equations (see Kendrick (1981), Ch. 6 and
Amman &t. d, Appendix A):

k, =w (2.6)
for the termind period N and:
k= E{w+bk,,a’}- (E{l +bk, b’} *(E{bk,,a0})? 2.7)

for any other period. Taking expectationsin (2.7) and re-arranging, we obtain:

bk.b* U

é
k. =w+ bk, .a%al- .
‘ e | +bkk+1(b2+85<k>)5

(2.8)

o™

The Riccati equations are solved by backward integration starting from period “ N-1" .
Sincew provides asort of “price information’ about the value of keeping the system in Sate
X, @ time N, the Riccati equations transmit this information from the last period backward in

time. In what follows, the Riccati equations will be the main tool to sudy the link between future

® This case is common when working with log-linearized models or models with variables expressed in



uncertainty and optimd firg-period control response. Thus, it is convenient to andyze in detall
some of their properties.

Noticefirst that k will aways be postive. Sncew is postive, from (2.6) k,, will be
positive. Gven that k,, ispogtive, from (2.8) k,,_, will o be postive, sSnce the numerator in
the term between bracketsin (2.8) is dways smdler than the denominator, making that term
aways pogtive. By the same reasoning, snce k,,_, ispostive, we obtain that k,,_, will be
positive, and so on. We can conclude that k will dways be pogtive.

From (2.8) we obtain:

é 2| k+ 2 2 2+ 4 2 2+ 2.2 U
T - pacg- 2 DKl *DKaD *D KubSwo ygang a1, (29)
TKeis g (' +bkk+l(b +Sb(k))) H

The numerator in the term between brackets will dways be smadler than the
denominator,® making that term aways positive and smaler than one. Since |aj £1 and
0<b £1,(29) will dways be postive and smdler than one. Findly, from (2.9) we obtain:

2 2b? 1%a2b?(bk _b? +l +bk, . s2
T[ l:k - ( k+1 . . 4k+l b(k)) é.O (210)
ke (I + bk, 0? +s2, )

sgnce &, k and b are positive. It follows that (2.8) isadtrictly concave function. The information
provided by (2.6), (2.9) and (2.10) is represented in the phase diagram below, which
characterizes the dynamics of the Riccati equations, where “ss’ means Steady- state.

percentage changes with respect to a base case.
® Since the expanded denominator:

2 29,2 4 21,2 2_.2 2 2 29,2 4
21 bk,.,.b* +b?kZ,b* +2b? k2 b*s 2, +12+2l bk,,SZ, + b2 kZ,Sk,

contains all the numerator’ sterms.



From the diagram it follows that k will dways be positive and increasing as we move

backwards from the termind period:

k, >k, ... >k, ; >k, . (211)

3. Current Uncertainty, Future Uncertainty and Optimal First-Period Response

Here the interest isin the effects on the firg-period response of the policy variable u (or
equivaently, on |G|, the absolute value of G) when thereisaincressein s 2, the uncertainty
associated with the parameter which is multiplied by the control variable. Sncel and k are
positive, and given that the absolute value of quadratic termsis their own vaue, from (2.5) we

can write:

bk,,|ab
| +bk,, (b +s2, )

G| = (3.1)

From (3.1) we obtain the effect on the first- period response in the policy variable when

thereisaincrease in current uncertainty:



NS _ . b* k/|ab)
T[SE(O) (I + bkl(b2 +sz(0) ))2

<0. (3.2)

Thisisthewell known result that an increase in current uncertainty will dways induce a
more cautions firgt-period response from the control variable u.

Consder the case of an increase in future uncertaintys sm , Where T can teke any value
between 1 and (N-1). The multiperiod link between future uncertainty s ,, and the absolute
vaue of the firg-period feedback gain coefficient G, is made by the successive Riccati

equations. From (3.1) and (2.8) we obtain:

MGl _Tlel T

> . -—>0 (3.3
ﬂsb(T) lel lek+l ﬂsb(T)

snce dso from (3.1) and (2.8) we obtain, respectively:

G I b
ﬂ| 0| - |a12)| - > >0 (34)

Tk, (I +bk1(b +Sb(0)))
31,3 22

Tk __ Dbkr,a’b >0 (3.5)

T[SE(T) (I + ka+1(b2 "'Ss(T)))2

Tk,

k+1

while from (2.9) we know that

> 0. Consequently, an increase in future uncertainty will

awaysinduce a more intense firgt- period response from the control variable u. Facing an



increase in future uncertainty, it makes sense to use more intensaly the first-period control since
it has, in relative terms, amore predictable impact on the state variable.”

What will be the effect on the fird- period response in the policy varigble u when thereis
an equd increase in both current and future uncertainty? This amounts to compare the absolute
vaue of (3.2) againgt (3.3). From (3.2)-(3.5), amplifying and re-arranging, we obtain:

; g ¢ 2
LT RN S SN ¥ SR AT
T ﬂsb(o) g T1-|Sb(T) lek+1 g(l +ka+1(b +Sb(T))) :

Indeed, the term between brackets on the right hand sde will dways be smdler than

one, since the denominator contains al the numerator’s terms.® From (2.9), dl the

corresponding terms of the form K, will dways be smaller than one™® Findly, a? and b will

k+1

aways be amdler or equd to one. Therefore, the inequality condition in (3.6) will be stidfied if:
k:l.2 > kT2+1 (38)

"Noticethat if 1 =0, (3.4) and thus (3.3) will be zero, since ki, vanishes from (3.1). With no weight on the
control variablethe link between future uncertainty and first-period response is broken, and the optimal
policy becomes afunction of contemporaneous parametersonly.

8 |f parameter a is allowed to be stochastic (that is, if s 21 0) but uncorrelated withb we can write:

TGo| _ G| T« *_ .,

TS aZ(T) lel Tk K+ TS azcr)
el Tk, R . o
since remains the same as (3.4); in (2.9) ismodified by adding theterm “ + bs?” toitsright

1 k+1
hand side, thusit will still be greater than zero but it may or may not be smaller than one; and finally
%,

2
a(T)

inits future variance will bring about amore intense first period optimal response. Noticethat s 2 will

remain absent from (2.5) and thusfrom (3.1). Thus, anincreasein the current variance of a will not affect
the optimal policy response. Allowinga and b to be correlated does not yield, in general, unambiguous
results. See Craine (1979) and Holly and Hughes-Hallett (1989), Ch. 4.

° Seefootnote 5 for an expression of the expanded denominator.

=bk,, whichispositive, sinceb andk are positive. Therefore whena is stochastic an increase




which, from (2.11), will dways be the case. Thus, gven an equal increase in both current an
future uncertainty, caution will always prevail over intensity in the first-period optimal
response of the control variable u.**

What will be the effect on the first-period response in the policy varigble u asthetiming
of the increase in uncertainty changes? There are two interesting cases. Consider first the case
of an increase in future uncertainty which moves farther away into the future, e.g. from period T
to T+ 1. Inthis case, (3.3) will become amdler, snceit will contain an extraterm of the form
(2.9), which is gregter than zero and smdler than one, while the last term (3.5) will decrease.

Indeed, from (3.5) and sincel , b and k are postive, we obtain:

ﬂsz - b3 2+1a2b2(3| + ka+1 (b2 +S§(T) ))
1-|S§(T)ﬂkT+l (I + bkI'+1(b2 +S§(T) ))3

>0 (3.9)

and, from (2.11), we know that as we move from T to T+ 1, k will become smdler and so will
(3.5), gnce (3.9) is positive. Consequently, given an increase in current uncertainty and an
egual increase in future uncertainty, the prevalence of caution will be enlarged as the
increase in future uncertainty moves farther away into the future, since the intensity it
induces on the first-period response of the control variable will decrease while the
cautionary component of the policy response will remain the same.”

Condder now the case in which the future increase in uncertainty expands from T into

the future, that is, when it includestime periodsfrom T to T+m, where LZEmE£ N - T. Inthis
case the overall effect on |G| will bethe sum of m+ 1 effects, each of them computed asin the

case of “moving” uncertainty analyzed above. We know that each of those effects will be

positive and decreasing as m increases. Thus, given an increase in current uncertainty and

k
% This may not be true if we allow parameter a to be stochastic, since L may not always be smaller than
k+L
one. See footnote 8.
! Notice that this result holds even in the case of no time discounting in the criterion function of the
optimization problem, that is, when b=1.
2 |ndeed, notice that (3.2) is not affected by changesin future uncertainty.



an equal increase in future uncertainty, the prevalence of caution will be reduced as the
increase in future uncertainty expands into the future. This expansion induces a growing
intensity (though at a decreasing rate) in the first-period response of the control, while
the cautionary component of the policy response will remain the same.™®

A numericd example will help to illugtrate these findings. Consder a problem with the
folowingparanges b =1, w=1,1 =05,a=0.9, b=-0.2, N=5, and withaninitid
condition x, = 100. For abasdine solution with s 2 = 0.001, the corresponding first-period
optimal response s Uy, = 79.88. Table 1 below shows the results of five experimentsin

which s, increasesto 0.1.*

Tablel
T U, |uo - uo(base)
0 5550 24.38
1 8232 244
2 8089 101
3 8020 0.32
4 7993 0.05

As expected, the increase in current uncertainty (T = 0) induces a more cautious firgt-
period response, while a more intense, though decreasing response is gpparent as the increase
in future uncertainty moves farther away into the future (T = 1,..., 4). Also as expected, the
absolute vaue of the difference between the policy responses in the experiments and the

BWill intensity ever prevail over caution? A formal answer to this question may be, if possible, very
difficult to obtain, since it amounts to show that the value of the corresponding sum of expanding
expressions of the form (3.3) may become larger than the absolute value of (3.2). Numerical experimentation
suggests that this possibility may not exist, unless the absolute value of a isgreater than 1. In this case, the
numerical value of the expressions of the form (3.3) may well become increasing as future uncertainty moves
or expands into the future, inducing an increasing intensity in the first-period optimal response of u.

 The experiments were performed with DUALI. See Amman and K endrick (1999).



baseline response -|u0 - uo(base)|- is larger for the case of current uncertainty than for any case

of future uncertainty, so thet caution prevailsin all cases™

4. Conclusions

This article analyzed the trade- off between “caution” and “intengity” in the use of the
control variable is an optimd policy problem defined as a Dynamic Stochastic Quadratic Linear
Problem with a one-gtate one-control state equation, where the control parameter is uncertain.
It showed that the trade-off between “caution” and “intengity” will dways depend on the timing
of the uncertainty. Given an increase in current uncertainty and an equd increase in future
uncertainty, caution will dways prevall over intensity. The prevaence of caution will be enlarged
as the increase in future uncertainty moves farther away into the future, while it will be reduced
as the increase in future uncertainty expandsinto the future.

> Notice that the sum of the series of absolute value differences for the cases of future uncertainty (T =1, ...
, 4) ismuch smaller than in the case of current uncertainty (T = 0), so that the prevalence of caution over
intensity, though reduced, holdseven in the case of expansion in future uncertainty. See footnote 13.
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