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Abstract  
 

This article analyzes the trade-off between “caution” and “intensity” in the use of 
the control variable in a one-state one-control dynamic stochastic quadratic linear 
optimization problem with discount factor.  It studies the effects that changes in 
uncertainty of the control parameter have on the optimal first-period response of the 
control variable, showing that the trade-off between “caution” and “intensity” depends 
on the timing of the uncertainty. 

  Given an increase in current uncertainty and an equal increase in future 
uncertainty, caution will always prevail over intensity. Moreover, the prevalence of 
caution will be enlarged as the increase in future uncertainty moves farther away into the 
future, while this prevalence will be reduced as the increase in future uncertainty expands 
into the future. 
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1. Introduction 

The effects of parameter uncertainty on optimal policy have received increasing attention 

over the last few years, particularly in the field of macroeconomic policy analysis. 1Special 

attention has been paid to the fact that central banks tend to use their policy tools in a cautious 

way.2  

Important theoretical results were developed in an earlier group of studies, building on 

the seminal Brainard (1967) paper which showed, for a static model, that an increase in 

uncertainty would result in a more cautious use of the policy variable. Brainard’s results were 

extended to dynamic models by Chow (1973), Turnovsky (1975) and Shupp (1976) for the 

case of current uncertainty. Craine (1979) pointed out the relevance of the effect of future 

uncertainty, since this would induce a more aggressive -instead of a more cautious- use of the 

policy variable, a less familiar effect than the caution effect.3 These studies dealt mostly with 

one-state one-control models. 

Since current uncertainty induces “caution” while future uncertainty induces “intensity”, 

it is natural to ask what happens when both types of uncertainty are present. This article 

analyzes the trade-off between caution and intensity in the first-period response of the control 

variable when there is a change in both current and future uncertainty.4 It focuses on a one-state 

one-control dynamic stochastic quadratic linear optimization problem, and it uses the Riccati 

equations to study the dynamic link between future uncertainty and first-period policy response. 

The findings are that given an increase in current uncertainty and an equal increase in future 

uncertainty of the control parameter, caution will always prevail over intensity. The prevalence 

of caution will be enlarged as the increase in future uncertainty moves farther away into the 

                                                                 
1 See for example Wieland (1998), Amman and Kendrick (1999), Mercado and Kendrick (1999 and 2000) and 
Sack (2000).  The analysis of optimal policy under uncertainty  can be approached in different ways besides 
the one used here, focused on optimal control under parameter uncertainty. For a road map of approaches, 
see  Christodoulakis et. al (1993). 
2 For a recent survey on this issue see Clarida et. al (1999). 
3 Mercado and Kendrick (2000) extend this result to a one-state two-control model, showing that given an 
increase in future uncertainty there will be an increase use of both, of at least one, of the first-period 
controls, depending on the relative magnitude of their first-period weighted variances.   
4 It is usual to focus on the first-period behavior of the policy variable, since its qualitative behavior may 
well change beyond the first period. This is  because its optimal values after the first period will be 
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future (from a given future period to a more distant one), while it will be reduced as the increase 

in future uncertainty expands into the future, that is, to several future periods. 

 

2. The Optimization Problem 

 Consider a one-state one-control Dynamic Stochastic Quadratic Linear Discounted 

Problem, where the control parameter is uncertain. Formally, the problem is expressed as one 

of  finding the controls ( ) 1
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kku  to minimize a quadratic criterion function J of the form:  
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subject to: 

      kkkk ubxax ε++=+1                                                (2.2) 

where: 

  E = expectation operator 
β  = discount factor  ( )10 ≤< β  

x = state variable 
u = control variable  
w = positive weight on the state variable 
λ = positive weight on the control variable  
a =  state parameter 
b =  control parameter 

           2
bσ = parameter b variance 

ε  = random disturbance 
 

Desired paths for the state and the controls are zero.5 Parameter means a and b and 

variance 2
bσ  are assumed to be known, and 2

bσ  may vary over time. Finally, the absolute value 

of the state parameter a is assumed to be smaller or equal to one (the state equation is not 

unstable). The solution to the problem is the feedback rule (see Kendrick (1981), Ch. 6 and 

Amman et. al (1995), Appendix A): 

                                                                                                                                                                                                 
computed recursively, using the model equation to determine the value of the state variable for period 
“k+1” (see Kendrick 1981, Chapter 6). 
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     kkk xGu =                                                 (2.3) 

where the feedback gain coefficient is:  

{ }( ) { }bakEbkEG kkk 1

12
1 +

−
++−= ββλ                               (2.4) 

 

and where k is the Riccati matrix (in this case, a scalar). Since { } 222
bbbE σ+= , while 2

bσ  is 

allowed to vary with time, we can write: 
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The evolution of k is given by the Riccati equations (see Kendrick (1981), Ch. 6 and 

Amman et. al, Appendix A): 

 

 wkN =                                                     (2.6) 

for the terminal period N and: 
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for any other period. Taking expectations in (2.7) and re-arranging, we obtain:  
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The Riccati equations are solved by backward integration starting from period “N-1”. 

Since w provides a sort of  “price information” about the value of keeping the system in state 

Nx at time N, the Riccati equations transmit this information from the last period backward in 

time. In what follows, the Riccati equations will be the main tool to study the link between future 

                                                                                                                                                                                                 
5 This case is common when working with log-linearized models or models with variables expressed in 
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uncertainty and optimal first-period control response. Thus, it is convenient to analyze in detail 

some of their properties.  

 Notice first that  k will always be positive. Since w is positive, from (2.6) Nk  will be 

positive. Given that Nk  is positive, from (2.8) 1−Nk  will also be positive, since the numerator in 

the term between brackets in (2.8) is always smaller than the denominator, making that term 

always positive. By the same reasoning, since 1−Nk  is positive, we obtain that 2−Nk  will be 

positive, and so on. We can conclude that k will always be positive. 

From (2.8) we obtain: 

 

( )( ) 10
2

1
22

)(
2

1

2
)(

22
1

242
1

22
12

1

〈〉












++

++
−=

+

+++

+

and
bk

bkbkbk
a

k
k

kbk

kbkkk

k

k

σβλ

σβββλ
β

∂
∂

.         (2.9) 

 

The numerator in the term between brackets will always be smaller than the 

denominator,6 making that term always positive and smaller than one. Since  1≤a  and 

10 ≤< β , (2.9) will always be positive and smaller than one. Finally, from (2.9) we obtain:  
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since ë, k and β are positive. It follows that (2.8) is a strictly concave function. The information 

provided by (2.6), (2.9) and (2.10) is represented in the phase diagram below, which 

characterizes the dynamics of the Riccati equations, where “ss” means steady-state. 

 

 

 

                                                                                                                                                                                                 
percentage changes with respect to a base case. 
6 Since the expanded denominator: 
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From the diagram it follows that k will always be positive and increasing as we move 

backwards from the terminal period: 

 

NN kkkk >>> −121 ...  .                                              (2.11) 

 

 

3. Current Uncertainty, Future Uncertainty and Optimal First-Period Response 

  Here the interest is in the effects on the first-period response of the policy variable u (or 

equivalently, on |G|, the absolute value of G) when there is a increase in 2
bσ , the uncertainty 

associated with the parameter which is multiplied by the control variable. Since λ and k are 

positive, and given that the absolute value of quadratic terms is their own value, from (2.5) we 

can write : 
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From (3.1) we obtain the effect on the first-period response in the policy variable when 

there is a increase in current uncertainty:  
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This is the well known result that an increase in current uncertainty will always induce a 

more cautions first-period response from the control variable u. 

Consider the case of an increase in future uncertainty 2
)(Tbσ , where T can take any value 

between 1 and (N-1). The multiperiod link between future uncertainty 2
)(Tbσ  and the absolute 

value of the first-period feedback gain coefficient 0G  is made by the successive Riccati 

equations. From (3.1) and (2.8) we obtain: 
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since also from (3.1) and  (2.8) we obtain, respectively: 
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while from (2.9) we know that  .0
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 Consequently, an increase in future uncertainty will 

always induce a more intense first-period response from the control variable u. Facing an 
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increase in future uncertainty, it makes sense to use more intensely the first-period control since 

it has, in relative terms, a more predictable impact on the state variable.7 8 

 What will be the effect on the first-period response in the policy variable u when there is 

an equal increase in both current and future uncertainty? This amounts to compare the absolute 

value of (3.2) against (3.3). From (3.2)-(3.5), simplifying and re-arranging, we obtain: 
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 Indeed, the term between brackets on the right hand side will always be smaller than 

one, since the denominator contains all the numerator’s terms.9 From (2.9), all the 

corresponding terms of the form  
1+k

k

k
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 will always be smaller than one.10 Finally, 2a and β will 

always be smaller or equal to one. Therefore, the inequality condition in (3.6) will be satisfied if: 
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7 Notice that if  λ = 0,  (3.4) and thus (3.3) will be zero, since k k+1 vanishes from (3.1).  With no weight on the 
control variable the link between future uncertainty and first-period response is broken, and the optimal 
policy becomes a function of contemporaneous parameters only.  
8 If parameter a is allowed to be stochastic (that is, if 02 ≠aσ )  but uncorrelated with b we can write: 
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 which is positive, since β  and k   are positive. Therefore when a is stochastic an increase 

in its future variance will bring about a more intense first period optimal response.  Notice that 2
aσ  will 

remain absent from (2.5) and thus from (3.1).  Thus, an increase in the current variance of  a will not affect 
the optimal policy response. Allowing a and b  to be correlated does not yield, in  general,  unambiguous 
results. See Craine (1979) and Holly and Hughes-Hallett (1989), Ch. 4. 
9 See footnote 5 for an expression of the expanded denominator.  
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which, from (2.11), will always be the case. Thus, given an equal increase in both current an 

future uncertainty, caution will always prevail over intensity in the first-period optimal 

response of the control variable u.11 

What will be the effect on the first-period response in the policy variable u as the timing 

of the increase in uncertainty changes? There are two interesting cases. Consider first the case 

of an increase in future uncertainty which moves farther away into the future, e.g. from period T 

to T+1. In this case, (3.3) will become smaller, since it will contain an extra term of the form 

(2.9), which is greater than zero and smaller than one, while the last term (3.5) will decrease. 

Indeed, from (3.5) and since λ, β and k are positive, we obtain:  
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and, from (2.11), we know that as we move from T to T+1, k will become smaller and so will 

(3.5), since (3.9) is positive. Consequently, given an increase in current uncertainty and an 

equal increase in future uncertainty, the prevalence of caution will be enlarged as the 

increase in future uncertainty moves farther away into the future, since the intensity it 

induces on the first-period response of the control variable will decrease while the 

cautionary component of the policy response will remain the same.12  

Consider now the case in which the future increase in uncertainty expands from T into 

the future, that is, when it includes time periods from T  to T+m, where  TNm −≤≤1 . In this 

case the overall effect on 0G  will be the sum of m+1 effects, each of them computed as in the 

case of “moving” uncertainty analyzed above. We know that each of those effects will be 

positive and decreasing as m increases. Thus, given an increase in current uncertainty and 

                                                                                                                                                                                                 
10 This may not be true if we allow parameter a to be stochastic, since 

1+k
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may not always be smaller than 

one. See footnote 8. 
11 Notice that this  result holds even in the case of  no time discounting in the criterion function of the 
optimization problem, that is, when β =1. 
12 Indeed, notice that (3.2) is not affected by changes in future uncertainty. 
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an equal increase in future uncertainty, the prevalence of caution will be reduced as the 

increase in future uncertainty expands into the future. This expansion induces a growing 

intensity (though at a decreasing rate) in the first-period response of the control, while 

the cautionary component of the policy response will remain the same.13    

A numerical example will help to illustrate these findings. Consider a problem with the 

following parameters: β  = 1, w = 1, λ = 0.5, a = 0.9, b = -0.2,  N = 5,  and with an initial 

condition 0x  = 100. For a baseline solution with 2
bσ  = 0.001, the corresponding first-period 

optimal response is )(0 baseu = 79.88.  Table 1 below shows the results of five experiments in 

which 2
)(Tbσ  increases to 0.1.14  

 

 

 

 

 

 

 

 

As expected, the increase in current uncertainty (T = 0) induces a more cautious first-

period response, while a more intense, though decreasing response is apparent as the increase 

in future uncertainty  moves farther away into the future (T = 1,…, 4). Also as expected, the 

absolute value of the difference between the policy responses in the experiments and the 

                                                                 
13 Will intensity ever prevail over caution? A formal answer to this question may be, if possible, very 
difficult to obtain, since it amounts to show that the value of the corresponding sum of expanding 
expressions of the form (3.3) may become larger than the absolute value of (3.2). Numerical experimentation 
suggests that this possibility may not exist, unless the absolute value of a is greater than 1. In this case, the 
numerical value of the expressions of the form (3.3) may well become increasing as future uncertainty moves 
or expands into the future, inducing an increasing intensity in the first-period optimal response of u. 
14 The experiments were performed with DUALI. See Amman and Kendrick (1999). 

Table 1 

T    0u  
)(00 baseuu −  

0 55.50 24.38 

1 82.32 2.44 

2 80.89 1.01 

3 80.20 0.32 

4 79.93 0.05 
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baseline response  - )(00 baseuu − -  is larger for the case of current uncertainty than for any case 

of future uncertainty, so that caution prevails in all cases.15  

 

4. Conclusions 

This article analyzed the trade-off between “caution” and “intensity” in the use of the 

control variable is an optimal policy problem defined as a Dynamic Stochastic Quadratic Linear 

Problem with a one-state one-control state equation, where the control parameter is uncertain. 

It showed that the trade-off between “caution” and “intensity” will always depend on the timing 

of the uncertainty. Given an increase in current uncertainty and an equal increase in future 

uncertainty, caution will always prevail over intensity. The prevalence of caution will be enlarged 

as the increase in future uncertainty moves farther away into the future, while it will be reduced 

as the increase in future uncertainty expands into the future.  

                                                                 
15 Notice that the sum of the series of absolute value differences for the cases of future uncertainty (T = 1, ... 
, 4)  is much smaller than in the case of current uncertainty (T = 0), so that the prevalence of caution over 
intensity, though reduced,  holds even in the case of expansion in future uncertainty. See footnote 13. 
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